x^2+(3k+2)x+2(2k+2)=x^2+(3k+8)x-2(2k-1)

Simple and best practice solution for x^2+(3k+2)x+2(2k+2)=x^2+(3k+8)x-2(2k-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+(3k+2)x+2(2k+2)=x^2+(3k+8)x-2(2k-1) equation:


Simplifying
x2 + (3k + 2) * x + 2(2k + 2) = x2 + (3k + 8) * x + -2(2k + -1)

Reorder the terms:
x2 + (2 + 3k) * x + 2(2k + 2) = x2 + (3k + 8) * x + -2(2k + -1)

Reorder the terms for easier multiplication:
x2 + x(2 + 3k) + 2(2k + 2) = x2 + (3k + 8) * x + -2(2k + -1)
x2 + (2 * x + 3k * x) + 2(2k + 2) = x2 + (3k + 8) * x + -2(2k + -1)

Reorder the terms:
x2 + (3kx + 2x) + 2(2k + 2) = x2 + (3k + 8) * x + -2(2k + -1)
x2 + (3kx + 2x) + 2(2k + 2) = x2 + (3k + 8) * x + -2(2k + -1)

Reorder the terms:
x2 + 3kx + 2x + 2(2 + 2k) = x2 + (3k + 8) * x + -2(2k + -1)
x2 + 3kx + 2x + (2 * 2 + 2k * 2) = x2 + (3k + 8) * x + -2(2k + -1)
x2 + 3kx + 2x + (4 + 4k) = x2 + (3k + 8) * x + -2(2k + -1)

Reorder the terms:
4 + 4k + 3kx + 2x + x2 = x2 + (3k + 8) * x + -2(2k + -1)

Reorder the terms:
4 + 4k + 3kx + 2x + x2 = x2 + (8 + 3k) * x + -2(2k + -1)

Reorder the terms for easier multiplication:
4 + 4k + 3kx + 2x + x2 = x2 + x(8 + 3k) + -2(2k + -1)
4 + 4k + 3kx + 2x + x2 = x2 + (8 * x + 3k * x) + -2(2k + -1)

Reorder the terms:
4 + 4k + 3kx + 2x + x2 = x2 + (3kx + 8x) + -2(2k + -1)
4 + 4k + 3kx + 2x + x2 = x2 + (3kx + 8x) + -2(2k + -1)

Reorder the terms:
4 + 4k + 3kx + 2x + x2 = x2 + 3kx + 8x + -2(-1 + 2k)
4 + 4k + 3kx + 2x + x2 = x2 + 3kx + 8x + (-1 * -2 + 2k * -2)
4 + 4k + 3kx + 2x + x2 = x2 + 3kx + 8x + (2 + -4k)

Reorder the terms:
4 + 4k + 3kx + 2x + x2 = 2 + -4k + 3kx + 8x + x2

Add '-3kx' to each side of the equation.
4 + 4k + 3kx + 2x + -3kx + x2 = 2 + -4k + 3kx + 8x + -3kx + x2

Reorder the terms:
4 + 4k + 3kx + -3kx + 2x + x2 = 2 + -4k + 3kx + 8x + -3kx + x2

Combine like terms: 3kx + -3kx = 0
4 + 4k + 0 + 2x + x2 = 2 + -4k + 3kx + 8x + -3kx + x2
4 + 4k + 2x + x2 = 2 + -4k + 3kx + 8x + -3kx + x2

Reorder the terms:
4 + 4k + 2x + x2 = 2 + -4k + 3kx + -3kx + 8x + x2

Combine like terms: 3kx + -3kx = 0
4 + 4k + 2x + x2 = 2 + -4k + 0 + 8x + x2
4 + 4k + 2x + x2 = 2 + -4k + 8x + x2

Add '-1x2' to each side of the equation.
4 + 4k + 2x + x2 + -1x2 = 2 + -4k + 8x + x2 + -1x2

Combine like terms: x2 + -1x2 = 0
4 + 4k + 2x + 0 = 2 + -4k + 8x + x2 + -1x2
4 + 4k + 2x = 2 + -4k + 8x + x2 + -1x2

Combine like terms: x2 + -1x2 = 0
4 + 4k + 2x = 2 + -4k + 8x + 0
4 + 4k + 2x = 2 + -4k + 8x

Solving
4 + 4k + 2x = 2 + -4k + 8x

Solving for variable 'k'.

Move all terms containing k to the left, all other terms to the right.

Add '4k' to each side of the equation.
4 + 4k + 4k + 2x = 2 + -4k + 4k + 8x

Combine like terms: 4k + 4k = 8k
4 + 8k + 2x = 2 + -4k + 4k + 8x

Combine like terms: -4k + 4k = 0
4 + 8k + 2x = 2 + 0 + 8x
4 + 8k + 2x = 2 + 8x

Add '-4' to each side of the equation.
4 + 8k + -4 + 2x = 2 + -4 + 8x

Reorder the terms:
4 + -4 + 8k + 2x = 2 + -4 + 8x

Combine like terms: 4 + -4 = 0
0 + 8k + 2x = 2 + -4 + 8x
8k + 2x = 2 + -4 + 8x

Combine like terms: 2 + -4 = -2
8k + 2x = -2 + 8x

Add '-2x' to each side of the equation.
8k + 2x + -2x = -2 + 8x + -2x

Combine like terms: 2x + -2x = 0
8k + 0 = -2 + 8x + -2x
8k = -2 + 8x + -2x

Combine like terms: 8x + -2x = 6x
8k = -2 + 6x

Divide each side by '8'.
k = -0.25 + 0.75x

Simplifying
k = -0.25 + 0.75x

See similar equations:

| x^2+(3k+2)x+2(2k+2)=x^2+(3k+8)x-2(2k+1) | | x^2+(3k+2)x+2(2k+2)=0 | | x-x-3x=-4 | | y=cot(9x+5) | | y=tan(3x^2) | | sin^2x-3sinx-4=0 | | y=sec(2x-6) | | 2m*3= | | (7+2x)+3x-4=0 | | 3(4x-3)+2(-2x+7)= | | 35+2a=70 | | y=ln(4x^2-5X) | | 3x-9+2=11 | | 4x^2+3+1=0 | | 4m-10=-30 | | (-2x+7)-(x-5)= | | -6(3x-12)=72 | | 2[x+3]=-6 | | 2[x+3]=6 | | y=3+2(X) | | -3x(2y)= | | 3x-8=80-5x | | y=xln(7x-4) | | 3x+2(-x+5)= | | 4x+0.4=2r | | 9z+25z= | | [q-2]+1.5=-2.5 | | (2x+5y)(3x-6y)= | | 4w^2+12= | | 3w-5=11+2 | | m+b=c | | m+2p=d |

Equations solver categories